Integer-valued polynomials and binomially Noetherian rings

نویسندگان

چکیده

for each  and i ≥ 0. The polynomial ring of integer-valued in rational  is defined by Int (    an important example binomial and is non-Noetherian ring. In this paper the algebraic structure rings has been studied their properties ideals. notion ideal generated a given set defined.  Which allows us to define new class Noetherian using ideals, which we named it binomially One main result  over variables   present as that kind Noetherian. general Int( finite particular  subset  the  both are presented examples of 

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Rings of Integer-valued Polynomials

The classical ring of integer-valued polynomials Int(Z) consists of the polynomials in Q[X] that map Z into Z. We consider a generalization of integervalued polynomials where elements of Q[X] act on sets such as rings of algebraic integers or the ring of n× n matrices with entries in Z. The collection of polynomials thus produced is a subring of Int(Z), and the principal question we consider is...

متن کامل

What are Rings of Integer-Valued Polynomials?

Every integer is either even or odd, so we know that the polynomial f(x) = x(x− 1) 2 is integervalued on the integers, even though its coefficients are not in Z. Similarly, since every binomial coefficient ( k n ) is an integer, the polynomial ( x n ) = x(x− 1)...(x− n+ 1) n! must also be integervalued. These polynomials were used for polynomial interpolation as far back as the 17 century. Inte...

متن کامل

Integer-valued Polynomials over Quaternion Rings

When D is an integral domain with field of fractions K, the ring Int(D) = {f(x) ∈ K[x] | f(D) ⊆ D} of integer-valued polynomials over D has been extensively studied. We will extend the integer-valued polynomial construction to certain noncommutative rings. Specifically, let i, j, and k be the standard quaternion units satisfying the relations i = j = −1 and ij = k = −ji, and define ZQ := {a+bi+...

متن کامل

Integer-valued Polynomials

Let R be a Krull ring with quotient field K and a1, . . . , an in R. If and only if the ai are pairwise incongruent mod every height 1 prime ideal of infinite index in R does there exist for all values b1, . . . , bn in R an interpolating integer-valued polynomial, i.e., an f ∈ K[x] with f(ai) = bi and f(R) ⊆ R. If S is an infinite subring of a discrete valuation ring Rv with quotient field K a...

متن کامل

Integer-valued Polynomials on Algebras

Let D be a domain with quotient field K and A a D-algebra. A polynomial with coefficients in K that maps every element of A to an element of A is called integer-valued on A. For commutative A we also consider integer-valued polynomials in several variables. For an arbitrary domain D and I an arbitrary ideal of D we show I -adic continuity of integer-valued polynomials on A. For Noetherian one-d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ZANCO Journal of Pure and Applied Sciences

سال: 2022

ISSN: ['2412-3986', '2218-0230']

DOI: https://doi.org/10.21271/zjpas.34.s6.7